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~1ABSTRACT

This paper considers the synthesis of linear reduced order filtcr~.

and the synthesis of linear full order filters with minimum complexity .

The objective of a reduced order filter is to estim ate a linear trans—

formation of the state vector with a filter of lower dimension . This

type of filter occurs frequently in applications. Several cases arc

studied. In a number of cases it is shown that singular arcs exist .

In  instances where certain filter parameters are not subject to optiin i

zation , it is shown that the remaining parameters can he optimized with

a relatively simple procedure. Closed form solutions for a number of

cases have been obtained.

I. INTRODUCTION

The problem of optimal linear filtering has been examined from ii :u1V

v iewpoint -. , inc luding treatment within a contro l theoretic framework
I i J .  In t h i s  paper we wish to address the problem of e s t ima t ing  a
l inear  t ran s fo rmation of a state vector using a f i l ter  wh ich may be of
reduced order relative to the dimens ion of the state vector . Control
methodologies are used to optimize the parameters of the f i l t e r .

The mot ivat i on for this paper is based ott the fact that often one
is only interested in estimating a portion of a state ~1ector. In 3 F
accuracy pointing and tracking system for aircraft to satel lite t r a c k i n g  .

~
(. j, for example , one mi ght be primarily interested in es t imat ing cer ta in
physical variables such as angular rate of the line of si ght and the
point ing misalignment errors . ‘The state vector might he ve ry large ,
howeve r , containing many states associated with de ta i l e d  models of the
error producing mechanisms in inertial instruments. I f  one were te

desi gn a full orde r fil ter , the complexity would he intolerab le from
th e  viewpoint of a f l i ght computer implementation . Such di f f icu l t ies
have long been recognized and , consequently, t here has been cons i derable
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research in this area 13-9] . Within a deterministic framewo rk ,
Luenbe rger has shown that one may achieve consider ab le reduction of
complexity in the state reconstruction process when only a linear com-

bination of the state variables is required [10]. It would seem that

a similar reduction in comniexity should occur when the problem is

stochastic. Indeed, it ‘.111 become clear that this paper has some

relationship to observer theory.

Although the primary thrust of this paper is towards the reduct i on

of filter complexity through order reduction , it will be shown that it

is even possible to reduce filter complexity in the full order case.

This happens because for certain classes of problems the Kalman f ilter
is not the only solut ion [i i .  Other estimators can result in the samu
value for the perfo rmance me asure . -

The pape r is  divided into five sections . Section I I  casts the ( - t  i -

mation process into a deterministic control problem which then can Fe
solved via use of the matrix minimum principle . Section I I I  contains
the de velopment of the problem solution . The conditions for u n b i a s c e ’i t s s

are developed and the necessary conditions for optimality are g iven
Severa l crises whe re exact anc lytical solutions to the two point howidar~-
value problem may be foi~ d are presented.

The f i r s t  special case is that of terminal time estimation . The
i mport ance of th i s  case may be found in orbit determination and in
geodetic mode l determ ina t i on in wh ich one is interested in the optimal
est i mate at only one t ime instant. The solution for t h i s  case y ie lds
a s ingu la r i t -v which may he taken advantage of by choosing the simpl e s t
f i l t e r  con figurat ion . By choosing part of the structure a priori , one
needs to solve a si mple linear two point boundary value problem wh i ch is

p 
- easily accomplished. The second and third special cases are that of an

interval est imation problem. The optimal reduced orde r solution is gi~~en
in closed fo rm in these cases for various assumptions on the t ra n sforus i
tioli (whether t ime invarian t or time vary ing) of the f u l l order states
to the reduced state space .

.: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~



Section IV considers the solution to the t~~ point boundary val ue
p rob lem when part of the structure is chosen a priori. A Riccati solu-
tion is given . This solution may he done off line and the gains either
stored or approximated. Section V considers examples of the results .

The ability to obtain simple structures for filtering allows one

to implement the least complex filter. This will yield a vast savings

in on line computation or hardware implementation.

II .  PROBLEM STATFMENT

The system of interest is a Markov pro cess satisfying a linear
stochastic differential equation

z(t) A(t)x(t) w(t). (1)

The observation model is also linear

y(t) = C(t)x(t) + V ( t ) .

The state vector x is of dimension n and the observation vector ‘
~ 

is of

dimension m. It is assumed that the initial value of the state vector ,

x(t0), is uncorrelated with the p lant noise , w( t ) , and the measurement
noise , v(t). The noise processes are zero mean white processes, uncor-
related with each other, hav~ng covariance matrices

E~w(t )w T (T)~ = Q(t)~ (t-~)I ( 3 )
E~v( t ) v T (T) ~ = R(t)6(t-T).

The initial state of the system has mean and variance

li{x(to)} = P a  (. 1 )

• Var{x(t0)} = P0.

The problem is to estimate a linear transformation of the ~- .t a t e

vector
z it )  = N (t)x ( t)

where z is of dimension Q<n , and presumably the ~xn mat rix , N ( t ) , h~
selected to indicate the part of the system wh i ch is  of pr im ary concern.
As an example , if N (t) = C(t), then we are interested in the noise frci.

output as indicated by ( 2 ) .  The filter ~o be optimi zed is of the form

£(t) = F(t)~ (t )  + K (t)~ (t)  + g(t )  (6)  L

.1 
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where 2 is of dimension 9.  The erro r , e( t), is defined as

e(t)  = z (t )  - 2 (t) . ( 7 )
The deterministic vector , g ( t ) ,  and the f i l t e r  ini t ial  condition 2 ( t ~ J ,
are to be determined so that the filter is unbiased , i.e.,

E { e ( t ) }  = 0 Vt>t 0. (8)

Note that we do not require conditional unbiasedness wh i ch is a much
st ronger requirement. The matrices F ( t )  and K(t)  are then to be deter-
m ined so that the performance measure

J = E ff eT (t )U (t ) e(t ) d t  + eT (t f )Se(t f )

is a minimum . It is assumed that the weighting matrix S is positive

definite. The weighting matrix 11(t) is critical to the problem fonnula-

t ion , as we obtain di ffe rent results depending upon whethe r this matv~x

is  p o s i t i~ c definite or zero. It can make sense to have 11(t) be zero ,

when the onl~ t i me of real importance is the final  t i m e such as in
orbit cleternunat~ cin . Indeed when EJ ( t )  is zero and N is a constant
t rans fo rmation , it wIll be ~eeri that performance does not depend on
p 1 t~

I I I .  PROBL I~1 SOLW’ION

We shall f i r r t  examine the requirements for unb iasedness. by d i rec t
subs t i tu t ion  f m -ow (1) , (2) , (5) , and (6) , t he error equation is obt :u ned

= [N+NA- r ’ :-K c l\ + Fe + Nw - Ky - g. u l ~))

I f  g ( t )  is selected as
g = [~ +N A-FN - KC)p ( 1 ) )

where u ( t )  is the mean value of the system state ,
= A ( t )~~( t) ; p ( t 0 )  =

then i t  is clear that t ak ing  expectation of (10) g ives a h omogeneous
result

E {e (t ) } = P(t)E{e (ti)• (la ;

) h m s  i f  H e I t ~ ) = 1) , equat i on (8) is sa t i s f ied . This  is  true i f

2 ( t 0 )  = ~ (t 0) p,, (l~~l

-~~~~~-~~~~~ ~~~~~~~~~~~~~~ —~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



si nce then
E { e ( t - 1 ) }  = E f N ( t 0 ) \ ( t 0 )  -. N (t0~ i o} = () ( 1 ) )

and the desired result follows . Hence (11) is the expression needed for

g(t) and (13) specifies the filter initial condition . Equation (10) c~u~
be rewritten as

= ~~~~~~~~~~~~~ + Fe + Nw - Ky 15)

where i = x - p  s a t i s f i e s  the linear equation
= A + w .  ( l u )

Certainly x is a zero mean process hav in g i n i t i a l  var ian ce P 0 .  i t  is
convenient to work with the second moment matrix associated with (15)
and ( 16) in formulat ing the optimal  contro l problem which wil l  g ive the

requirements for F and K.

The performance measure (9) can he w r i t t e n  as

J = tr~
J

tf U(t)P (t)dt + S1~~ ( t f 1 1L ~

where
P (t) F~e( t ) e T (t )~~.

From 1 5 ) ,  
~ee sat i s ies

= [~ +\ \ -F : ’~- }(CJP + PP + P F~ee xc ee ee ‘H

+ P HN+N A ~~N~KC 1T 
+ NQNT 

+ K 1~.KT

where
P t )  = F~e( t )  ~1t1 T 

= P—j t ) 1.

t ising ( 1 ~ ) and ( 16)  , i t  is easy to show that

= -~\p~~ + P~~ [ N + \ A - I - ~~-KC ] ’ + P~~F
I 

+ (
~~ ( 2 1 )

whe re
-

. : P~~(t) = E~x ( t ) x T (t)~ L2 )

s at i s f i e s  the e(iu at wml
= 

~~~~~~~~ + P~~A 1’ 
+

ftc t erm P~~ s a t i s f i e s  the t ranspose of ( 2 1 ) .  I n i t i a l  condit ioi . - - I

(19 , (21) , and (23) are

6
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= P 0

P ( t 0 ) = P —It 0) ~(t o)P~ ( 2 ) )

P ( t 0~ ~(t 0 ) P 0 N 1 (t 0 ) .

The matrix P~ ;It) may he reg arded as a known quant i ty  since it is t h ~
solution to (23), i.e.,

P~~-(tj = ~ ( t . t 0 ) P 0~
1

( t .t 0 )  + f t  ~~t T ) Q (~~)
J(t T)d r

where
q ( t , t) = I

and
~~(t , r )  = A (t)~~(t ,T ) .  (2 6 )

The opt imiza t ion  problem may then be stated in a deterministic way , so
that th e matr i x min im um pri nc iple is applicable. The p rob l em is
to minimi ze (17) by p roperly selecting F and K , subject to the con-
st raints imposed by (19) and (21). To preserve syn ulietr we include tn ’ -
transpose of (21) in the Hamiltonian also.

The l iamilton i.an for this prob lem is

11 tr~UP + 
~~ 

+ 
~~~~~ 

+ ~ 1.. T l  ( 27cc cc cc xc xc cx ex 1
The equations for the Lagrange mul t ip l ier  matrices arc

-~ = — — U + F~ A + A F (cc ~P cc cccc

= - = -. 

~A ’A--- + A— F + [ N A  r\ KC} TA ( 9 )Xe ~)P— xc xc ee~Xe

with te rminal  condi t ions
A ( t f ) = S (30 )

and

~~e (t f ) = 0. (~1)

The mat r i x i s  j us t the transpose of ~~~ Setting ) 1 ~ er adient  of II
w i t h respect to K eciua .l to zero ~ivcs a necessar ’ c:om Ji t i~s~ for th~
optimum ga in

1 - 1 1 2 - 1K = ~P : + .~~~~A P - — ; j C R  fli’)
CX ~~C i \  \)~

- I~~~~~~~~~~ Tii~~ ~~~~~~~~ 1L _. . —~~.



where R and Aee have been assumed to be nonsingular. The matrix F pre-
sents a d i f f i cu l t y  since it appears linearly in the Hainiltonian . I t  is
convenient to proceed as in [14] by examining that part of the Hami l-
toni an wh ich depends explicitly on F , defi ned as

= tr FO + OTFT~ (33)

where

o = IP - NP— lA + 1~ — - NP—lA— .

~~ee xej ee LCX xxj xe

Clearly what we have cal led 0 is jus t the transpose of the gradient
matrix , ~U/~F. From the initial conditions (24), it may be seen that

0(t 0) is zero . It is necessary to examine the time derivatives of 0

to determine the possible ex istence of a singu lar arc . Since diffe rent

requirements w i l l  be obtained , it is convenient to examine 0 under
diffe rent conditions . It is required that 0(t) equal :ero for all

tc [ t 0 , t f ] if a singular arc is to exist.

3.1 Case 1

I n this f i rst case , it is assumed that U( t )  is zero . Then it
follows that

= FO + OF + K [~~~A - CP—--A— - CP— A 1. (35)ee xx xe xe eej
The bracketed term in (35) is zern whenever K ( t )  is selected opt imal ly ,
according to (32). Therefore (35) becomes

= P0 + flf-~ ( 3())

and since 0(t 0 ) is zero , (36) assures us that 0( t)  remains zero for a l l
tI .[t Q , t f j ,  regardless of our choice of F. The implications of t h i s

result arc si gni f i cant .  In the full order case (N 1), as was pointed

out in [1], the Kal man filter is just one solution , i.e., one of the

optimal l inear  f i l te rs . This mean s that for f i i i a l  t ime estimation
problems , one should examine other realizations of the optimum linear

filter. It will be seen that such realizations can be easier to imple-
ment than the Kalman filter. We have demonstrated here that for reduced

order f ilters also the solut ion is not unique . One can pick F for some
other reason than minimiz ing  J , such as to reduce sens i t iv i ty , to s i t  isle

a const ra int , or to minimize some performance measure invo lving F.
Gonsider adding a nonnegative term

S



- -

t t 11 1 = J p [F(t)Idt
t o

to the perFormance measure .J given in (17) . Since (3=0 , it is seen that
a necessary condition fo r F to be op t i mal is tha t

= 0 Vt c[ t 0~ t f ] .  ~38)

For ex amp le , it may be advantageous to use a measure of F as

~ [F(t)] = trtF(t)TF(t)} 139 )

which weights the magnitude of the elements of F. This particular choice

of p yields an F identically equal to zero. This clearly is the simplest

solution for F.

An alternative method of choosing the gain K may proceed as fol lows.
‘This alternative method shows from another approach that , indeed, the

results contained herein are reasonable. Let be the transition

matrix for the opt imal  Kalman f i l t e r .  Obvious ly , this is the t r ansi t ion

matrix associated with IA-K 0C) where K0 is the optimal Kalman gain. If

one considered the solution of the Kalman filter at the final time ,

assuming :ero i n i t i a l  conditions , i . e . ,

Za (tf) 
= N (:f)~ o (tf) (40)

= 
f \(tf)$KF (tf,T)Ko(T)y(T)dT ,

whe re x 0 i s the optimal Kalman es t imate , and the so lu tion  for the
f i l t e r  deve l oped herein,  i . e . ,

(t = f 1  1 1. (t f~T)K([ 
) v(~)d~ (41)

whe re :- ~~. is the transition matr ix  associated wi th F , then it may be

noticed that  i t  is  su f f i c ien t  for opt imali ty  that  E i t ~i to be equal to

~~O ( t
f

)~~ and t h i s  holds if

N H  ~
) 

KF
(t r~~~~~0 ( T )  = ~~ ( f , T ) K ( T ) , ~~ :[t 0~ t f ] . ( 42 )

Si nce F is a rb i t r a r ~’ fo r the s ingu la r  solut ion or is :cro for the solu -
tion of the problem with (39) in the Ilami l tonian, F may he chosen as
.ero. If this ic  the case then the solution for the reduced orde r

filte r nain is

¶ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
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K(t) N(t f)~ Kr(t c,t)Ko(t)

where the transition matrix 
~Kr

(tf,t) may he cal cu lated f rom

d (
~KF (t f , t)

= - Y p1-(t t,t ) ( A K 0 C J ( I i )
dt

wh ich is integr ated backwards f rom ~Kr (t f , t f ) = I.  ‘The solution for
K ( t )  may be accomplished offline and either stored or approximated.

Probably the mos t advantageous p roperty of the singularity wi th
respect to F is computational. I f  F is picked a priori , then one only
needs to solve a linear two-point boundary -value problem (TPJ3VP) , which
is easy to do using linear systems theory. Alternatively one can use
a procedure which leads to a Riccati equation type of solution. These

methods are examined in a later section.

3.2 Case 2
In this case N is constan t but U is assumed to be positive definit .

This leads to an additional term in (36), i.e.,
0 = F® + g~: - (gee 

- NP--- ) ~ t 4 ~
Hence it is requi red that

P ( t ) = NrP.~ j t )  Vtc [t 0 , t f~ ( Th)

since Ii is positive definite . Clearly this cannot be satisfied icr

arbitrary F. Thus the existence of the singular arc depends on the
choice of F in this case. l)efiniiig (3 ,

(3 p - NJ) .
cc xc

it is seen that
= ft + (3F1 + (P--NV—) [NA- FN-KCI - K[RK 1 - C P - - j .  ( IS )

It is required that (3 (t )  equa l zero for a l l  t in the interval of ‘, n t ~- r c s t .
From (LH ) it is apparent that Or 0 ) is zero. In order to develop the
equation

— 
0 = P11 + OF 1 (4~))

so that (3 ( t )  is zero , i t  is req u i it~d t hat

NA - l-T’~ - = 0. (50)
‘Ilils leads to the result from (2H that

= 1) (511

10
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so that the gain is evaluated as

K(t) p
e t)CT(t)1~~~tL (52)

Clearly (52) implies that the last term in (48) is zero, and we h ave the
desired result. Thus if P can be chosen so that (50 ) is sa t isf ied , a
singular arc exists , provided K is selected according to (52 11 . In the

full order case, when N= I , the proper choice of P is

F = A - KC. (55
The TPBVP is then solved by the Kalnan filter , a result which is ea~ ~lv
verified. In the reduced order case , (50) is simply the observer con-

straint equation , [10). If the randomness were removed from the pro -lem .

(50) is required so that £ ( t )  N x ( t )  for t>t 0 if there is no drivi~~
vector , g. Equation (10) has an interesting interpretat ion. It is ease

to see that it is lust the orth ogon ali ty requi rement in a reduced sp. cc- ,

= 0. ( r •

It must be made clear that it is not always possible to satisfy (50 1 i’J

(52) simultaneously , and consequently it is not always possibic to t ~~~~~~~

a singular arc, In such cases the problem should probably he rc 4
~~t~ - it a teO

with bounds on F, or a suhoptimal solution accepted.

A necessary and sufficient condition that there be a solut i~~ 1- f t i

150) is that

(NA-KC)N~N = N\ - NC Vtc[t0 ~t f I 55)

where N is a pseudo inverse of the matrix N. In this case the s,lut i r - r~
for F is

F = fNA- KCJN + r [I-N7’~ j (50 )

where F is an arb i t rary  ~~ : i a tr ix  IU I .  In particular if \‘N1 is  non -

singular, then
= i~ \ -KC i \ T [~~’1 1 ( 5 7 )

i — a sol ut ion . When the F of I Y )  can he found , the K which is the

solution to I 52 ~su be eva l uated by solvi  nt ~ the equat iOn

= P A 1 
+ [NA- P C 1 R 1C1N I 1NN I ~~l p — + 

~~~~~ 
55)

L t . .~\ J L J C X

I roe I n i t  - t i  cei d i t  ion 2 ) )  , arid ~ Ib s t i t u t i n g  the result in (52) . Net

that there ;tr~. ~1 1\  ~1i element s 
~ ~~~ 

which may he fa r  less than i f  ~~

1 1

~~~~ ‘ L T ~~~~~~~
-----

~~~
-- - -- -----7 - 1 . . _ . .~~~~J . ~..
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were to solve the problem by estimating x first, and then use the result ,
= N~. Doing it that way would requi re solving a Riccat i equation wi th

n(n+l)/2 distinct elements.

3.3 Case 3
In this case, N is not constant. By some fortunate cancell ation ,

(45) is still applicable but 148) is not. Equation (4 8) is replaced b

= 1~ + + ( P _ - N P _ — ) [~ +NA-FN -K C] - KIRKT~CP_ 1 . (59)

It is clear that c2(t) will be zero if

~~÷NA - FN - KC = 0. iôO)

Then (51) and (52) and (54) are still t rue . To be able to solve (60)
for F , it is necessary and sufficient that

(t~&NA-KC)N ~N = [l~+NA-KC1Vtc [t0~tf1 . (61)

The solution for F is
= [~ +NA- K C)N~ + F[ I -N N ~ ]. (b2)

Again I f ~N
1 is nonsingular

F [N+NA~KC }NT [NN T ] l . (63)
The gain can then be found by solving the equation

= I)
e

_
xAT 

+ EN ‘-NA- Pe~C
TR lC] N

T 
~~T] 

- ip + NQ (64)

from the p roper in i t i a l  condition and substituting the result in (52).

ft . SOLUT ION FOR SPECIFIC F

In Case 1, it was found that the singular arc did not speci f y F.
In Cases 2 and ~~~, it is very possible that no F can he found to main t a in
the s i n g u l a r  arc . There fore it is appropriate to investigate the solu-
t i on to the TP~VP when I is speci lied a priori . It  is observed that

can be precor~ tuted in this case , and may be regarded as a knowi~

L 

quaii t i t .

= ~(t~t f)S~~(t ~tf) + f
t f 

~(t ,T) U ( )~
T (t ,~)th (65)

wh ere
- FT

~p
q ( t , t )  = I.

12
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Substituting the expression for the gain (32), in (22)  and (29) results
in a linear TPBVP since P~~(t) and Aee(t) are known. Equation (22)
becomes

= ~ + i~_~ +NA~~1T + P-- FT 
+ QNT - p~~~TR~ ‘C IP— + P—~ ~xe xe xx J xc xx L xe xx x c ee

Equation (29) is rewritten as

A = - - 
~~~~ 

p - [~+~~ J.N1 TJ~ + cTR~~cp~ + (~~R 1CP~~~. - ~xe xe xc j  ee xe xx ‘e is
(n 7 )

Equations (66) arid (67) are linear in the unknowns and 
~~e’ so there

is no di fficulty other than possibly the high dimensionality of the
problem to contend wi th .  If Aee is a scalar matri < , howeve r , th i i ~~.- work
out particularly well. S~~pos~ F , Ii, and S are scalar mat r i ces , i . e . ,

F = fI
U = ul (68)
S = sI .

Then obviously 1
~ee 

is a scalar matrix also . We can thus reposition A~~
and F in (66) and (67) obtaining

[A÷F- p C TR~ 
I
C]Pie 

- A 
‘

P ~C
T

R 
1

CP—A — + P__ [N4-NA- ~ ]T + ~~~~

and
= [A

T+F~A~~C
TR 1CP__]I~

_ 
+ CTR ’CP~e 

- [~+NA FN]TP ( T O )

Note that upon repositioning, the dimension of I in (68) will change in
general. It is convenient to make the following definitions

4 A + ~T 
- p~~cTR lC

G~~~2 
4 - A ’P ’R ’CP~~

~~ C~~~R
1

C (71)

C 2 2  - [A ’ + F -A 1CTR ’CP— 1

Dl  
~ p_-[~ +r~~-pN J T + QNT

1)2 A - [N+NA~FNI
TA .

i.c 

- .~~ J7 TT ~~~~ ~~~~ -_- — -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~- -~~~~~
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Then we have

= 
G 11 G 12 

{~~~~~~~~ 1 
+ (7 2 )

A— G21 G22 Vie] LD2
or

~xe 
= G —~~~~~1 + D .  (7 3)

A— A — ]

The boundary condition for 
~ie 

is at t o and for Aie is at tf. If 4> is

the transition matrix associated with G , i .e . ,

. ~~l 1  ~121 Ic 11 G 12 ~~11 4> 1 2

1 =  . . 1 = 1  ( 74)
4>21 ‘~22J [G 2 1  (32 2 ~ 2 1 ~ 22

and 4’(t,t) = I then

PieCt) = 4>ii (t~
to)Pie(to) 

+ ~12 (t ,t 0 )A— (t 0)

+ jt 
[~11 (t ,t )D i (t) + ~t2 (t ,T)D2(T)]dT . (75)

Also
0 = 

e(~i~
) = 

~2I(tf tØ)Pie(to) 
+ ~22 (tf,tQ)A— (to)

+ f
tf 
[~2l (tf,T)DI(T) + ~22 (tf,T)D2 (T)]dT . (76)

One can solve (76) for Aie(to)~ substitute the result in 
(7 5) and solve

(75) for Pie(t) in te rms of Pie(to)~ Similarly , one can solve for A~~(ti

using
A— Ct) = 

~21 (t~to)Pie
(to) + 

~2 2 (t
~t o) t ~ e (t o)

Ctr
+ J L~21(

t ,T)D1 (T) + ~22 (t~T)D2(T)j dT . (77)
to

The results can then be substituted in (32) to get the optimal gain.

Under certain conditions the above procedure is a good approach. Some-

times it is convenient to use an approach wh ich leads to a Riccati

equation .

4 .. A Riccati Solu t ion
Here we assume that 1

~xe can be w ri tten as

14
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A— = MPie + (3. (78)

Then

1
~ie 

[(:1 + MG 11 + MG 12 M jI~— + MD1 + ~ + MG 12 8
and

A— = [G 2 1  + G22M]Pie 
+ G22 (3 + D2 .  (79 )

If (78) and (79) are to hold for arbit rary 
~ie’ then

M + M G 1 1  + MG12 M = 62 1  + G2 2 M (80)

and

+ MD~ + MG12 (3 = G226 + D2. (81)

Since Aie(tf) = 0, the above equations are solved backwards in time from
conditions

M(tf) 
= 0 (82 )

and
8(t f ) = 0. (8~ )

Solving the Riccati equation (80) and the equation for (3 must be done

off line , as in a linear regulator problem, since the result is to he
obtaine d by backward integration . The forward equation for 

~ie 
is

~ie 
= ~~~~ G i 2M)I)ie 

+ G 12( 3 + D 1 (84)

which is solved from the appropriate initial condition either on line

or off lin e depending on compu ter requiren~nts. The gain to be used in

the filter is then

K = [~T + ~~~~~~~~~~~~~~~~~~~~ (85)

The results presented in this section are suboptimal in general , and

optimal in the situation referred to as Case 1.

V. EXN4PLES

The first example considers estimating the output of a generalized
Wiene r process , i.e., the nois e is Gaussian , A equals 0, N = C , and the

p rob lem is in the category indicated as Case 3. It is assume d that a

solution to (60) exists and that CCT is nonsingular . The opt imal
estimate of z(t) = C(t)x(t) is obtained using the filter

15
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~(t) = ~(t )CT(t)[C(t)CT(t)]~~~(t) + K(t) [y(t)-~ (t)I

wi th ini tial condi tion
z(t 0) = C(t0)p0

and gain
K(t) = P _ (t)CT (t )R l (t)

where

~ei 
= ~CT[CCT]lP_  + - p

ei~
TR~~1)

ei
wi th ini tial condition

= C(t0)Po ,

Alternatively , s ince CPie = g
ee ’ K may be evaluated as

K(t)  = P ( t) R 1 (t)

where

~ee 
= [~CT(CC

T)-1~K]P + P e[~CT(CCT)~~~K]T + CQCT + KRKT

The above is appealing since p~~ has fewer elements to calculate than

~xe
The next examp le is of the category referred to as Case 1 where a

ful l order f i l ter is used. I t  is a scalar case. The problem is to pet

a best estimate of x at t = T where

y( t) = x(t) + v(t) .
In i t ia l ly  at t 0  x has mean zero and variance 1, and v(t)  is zero mean
white noise with unity covariance parameter. If F is selected as zero

the filter is particularly simple with a constant gain

1z(t) = x(t) = ~~~ y (t) .

The initia l condition is ~(O) = 0. The meai i square erro r is

P( t ) = -

(1+1) 2

Evaluated at t = T , the above give s
1P(T) =

wh ich ~s ex actl y what one would ge t using a Kalman filter. The filter

: , ~s simp ler than a Kalman fil ter , hut the mean square error is lar ge r

16
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than the Kalman f i l t e r  excep t at t = -r where the mean square error i -q u:ti ’ ;

that of the Kalma n f i l t e r .  This is i l lus t ra ted in  F igure  1 with 1 = 1 .

Note that the f i l ter  we have deve loped in th i s  exan~ 1e is of the same
structure as the MAP receive r for es t imat ing  a constant as preseutec ! in
Van Trees [13].

The third exaiiple illustrates both Cases 1 and 2. In this example
the system is given by a second order dynamic model representing a

vehicle with random thrust, i.e.,

;
~1 1° Il Ix i 0

1 I H + w
x2] [0 Oj [x 2 1

where x 1 represents the pos it ion of the vehicle and x 2 the velocity and
w is a zero mean white noise thrust with covariance q. The vehicle
position is observed vi~

y = x1 + r
where r is zero mean white measurement noise with covariance r. A

reduced order filter is to be designed in order to estimate the po sit i~ n

of the vehicle. The realizations for the Kalmati filter and the Iilt- ’r

developed here are shown in Fi gures 2 and 3. %Ve have selected E r  ii . ] he

estimation performance index used is equation (17). The values for -
~ 
and

r are 10. and 1. respectively. The final time was chosen as one scco~ d.

The first case is that of final time estimation (U 0 and S’ 1) and t~~ t

second case corresponds to I J =  100. and S 1. 1-i gure 4 show s the mc~u

square value of the first case. The Ka l ma~i resul ts  are not shown i~~

two results are nearly coincident . A measure of dev ia t ion  from th c

Kalman results of

j * = J
tf (gee 

- P~~.)dt

where is  the Kalman f i l t e r  mean square error y ields J ’~ =

Figure 5 sh~~s the mean square value of the second case. Again , the
- - 

results are too close t~ plot separately. The measure of deviation

yields J*= 0.0052.
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VI . RB~1ARKS AND CONCLUSIONS

We have presented new results in optimal and suhoptimal filtering.

These results are very attractive for imp lementat ion purposes particularly
for problems where the Kalman f i l ter  is of too great a dimension to he
practical. The results herein are in closed form and , thus , it is not

necessary to solve a difficult two point boundary value problem. Some

relatively simple realizations may be obtained via off line computation.

One of the limitations of the results is that there may be problems

whereby a solution for F as in (50) or (60) may not exist . Also , one
cannot conclude that the filter is conditionally unbiased when F is

specified arbitrarily.

However, the results can be used in a nuither of problems to

decrease the on-line computational burden with the filter structures

described in this paper, and this is exceedingly important in many
applications. This paper yields a method for synthesis of reduced

order filters as well as a class of full order filters of simpler

structure.
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